Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542472

RESUMO

In recent years, the field of biology has witnessed a surge of interest in genomics research due to the advancements in biotechnology. Gene expression pattern analysis plays a crucial role in this research, as it enables us to understand the regulatory mechanism of gene expression and the associated biological processes. Real-time quantitative polymerase chain reaction (q-PCR) is an efficient method to analyze the gene expression patterns, for which accuracy relies on the standardized analysis of reference genes. However, numerous studies have shown that no reference gene is universal in all conditions, so screening a suitable reference gene under certain conditions is of great importance. Cinnamomum burmannii (C. burmannii) is rich in volatile components and has high medicinal and economic value. However, knowledge of the screening of reference genes for the gene expression analysis of C. burmannii is insufficient. Aiming at this problem, we evaluated and screened the reference genes in C. burmannii under different experimental conditions, including different abiotic stresses (Cold-treated, PEG-treated and Nacl-treated), different tissues, leaves at different developmental stages and different chemical types. In this study, different algorithms (∆Ct, geNorm, NormFinder and BestKeeper) were used to evaluate the stability of the candidate reference genes, and RefFinder further merged the output data to screen out the optimum reference gene under various experimental conditions in C. burmannii. The results showed that the optimal reference gene number for gene standardization was 2 under different experimental conditions. RPL27|RPS15 was the most suitable combination under the Nacl-treated and PEG-treated samples. RPL27|APT was the optimum combination under the Cold-treated samples. The optimal combinations of other samples were EF1α|ACT7 for different tissues, eIF-5A|Gllα for different borneol clones in C. burmannii, RPS15|ACT7 for leaves at different developmental stages and RPS15|TATA for all samples. Additionally, two terpenoid synthesis-related genes (CbWRKY4 and CbDXS2) were standardized to verify the feasibility of the selected reference genes under different experimental conditions. This study will be helpful for the subsequent molecular genetic mechanism study of C. burmannii.


Assuntos
Cinnamomum , Regulação da Expressão Gênica de Plantas , Cloreto de Sódio , Cinnamomum/genética , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência
2.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542843

RESUMO

The genus Cinnamomum encompasses diverse species with various applications, particularly in traditional medicine and spice production. This study focuses on Cinnamomum burmanni, specifically on a high-D-borneol-content chemotype, known as the Meipian Tree, in Guangdong Province, South China. This research explores essential oil diversity, chemotypes, and chloroplast genomic diversity among 28 C. burmanni samples collected from botanical gardens. Essential oils were analyzed, and chemotypes classified using GC-MS and statistical methods. Plastome assembly and phylogenetic analysis were conducted to reveal genetic relationships. Results showed distinct chemotypes, including eucalyptol and borneol types, with notable variations in essential oil composition. The chloroplast genome exhibited conserved features, with phylogenetic analysis revealing three major clades. Borneol-rich individuals in clade II suggested a potential maternal inheritance pattern. However, phylogenetic signals revealed that the composition of essential oils is weakly correlated with plastome phylogeny. The study underscores the importance of botanical gardens in preserving genetic and chemical diversity, offering insights for sustainable resource utilization and selective breeding of high-yield mother plants of C. burmanni.


Assuntos
Canfanos , Cinnamomum , Lauraceae , Óleos Voláteis , Humanos , Óleos Voláteis/química , Cinnamomum/genética , Filogenia , Herança Materna
3.
Int J Biol Macromol ; 264(Pt 2): 130763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467223

RESUMO

Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.


Assuntos
Lindera , Óleos Voláteis , Terpenos/metabolismo , Frutas , Lindera/genética , Lindera/metabolismo , Óleos Voláteis/metabolismo , Monoterpenos/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474323

RESUMO

This work aimed to identify the chemical compounds of Cinnamomum burmannii leaf essential oil (CBLEO) and to unravel the antibacterial mechanism of CBLEO at the molecular level for developing antimicrobials. CBLEO had 37 volatile compounds with abundant borneol (28.40%) and showed good potential to control foodborne pathogens, of which Staphylococcus aureus had the greatest inhibition zone diameter (28.72 mm) with the lowest values of minimum inhibitory concentration (1.0 µg/mL) and bactericidal concentration (2.0 µg/mL). To unravel the antibacterial action of CBLEO on S. aureus, a dynamic exploration of antibacterial growth, material leakage, ROS formation, protein oxidation, cell morphology, and interaction with genome DNA was conducted on S. aureus exposed to CBLEO at different doses (1/2-2×MIC) and times (0-24 h), indicating that CBLEO acts as an inducer for ROS production and the oxidative stress of S. aureus. To highlight the antibacterial action of CBLEO on S. aureus at the molecular level, we performed a comparative association of ROS accumulation with some key virulence-related gene (sigB/agrA/sarA/icaA/cidA/rsbU) transcription, protease production, and biofilm formation in S. aureus subjected to CBLEO at different levels and times, revealing that CBLEO-induced oxidative stress caused transcript suppression of virulence regulators (RsbU and SigB) and its targeted genes, causing a protease level increase destined for the biofilm formation and growth inhibition of S. aureus, which may be a key bactericidal action. Our findings provide valuable information for studying the antibacterial mechanism of essential oil against pathogens.


Assuntos
Cinnamomum , Óleos Voláteis , Óleos Voláteis/farmacologia , Cinnamomum/genética , Staphylococcus aureus/fisiologia , Virulência , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Biofilmes , Estresse Oxidativo , Transcrição Gênica , Peptídeo Hidrolases/genética , Testes de Sensibilidade Microbiana
5.
Genes (Basel) ; 13(10)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36292772

RESUMO

Quantitative real-time PCR (qPCR) is an indispensable technique for gene expression analysis in modern molecular biology. The selection and evaluation of suitable reference genes is a prerequisite for accurate gene expression analysis. Schimasuperba is a valuable tree species that is environmentally adaptable and highly fire-resistant. In this study, 12 candidate reference genes were selected to check their stability of gene expression in different tissues under abiotic stresses: cold stress, salt stress, and drought stress by ΔCt, geNorm, NormFinder, BestKeeper, and RefFinder. The results indicated that AP-2 was the most stably expressed overall and for the cold stress and drought stress. eIF-5α gene expression was the most stable under the salt stress treatment, while UBQ expression was the most stable across mature leaves, shoots, stems, and roots. In contrast, UBC20, GAPDH, and TUB were the least stably expressed genes tested. This study delivers valid reference genes in S. superba under the different experimental conditions, providing an important resource for the subsequent elucidation of the abiotic stress adaptation mechanisms and genes with biological importance.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estresse Fisiológico/genética , Secas
6.
Front Genet ; 13: 1087495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685943

RESUMO

Essential oil of Cinnamomum burmannii is rich in monoterpenes and sesquiterpenes and is widely used in cosmetics and medicines. Knowledge about the enzymes that catalyze the formation of monoterpenes and sesquiterpenes in C. burmannii is insufficient. Therefore, anatomy observation of C. burmannii at the four developmental stages (7 days, CBS1; 14 days, CBS2; 21 days, CBS3, and 28 days, CBS4) were conducted to elucidate the origins of essential oil production. Twelve full-length transcriptomes of C. burmannii leaves at the four stages were generated using Oxford Nanopore Technologies. GC-MS analysis revealed 15 monoterpene and sesquiterpenes dramatically increased from CBS1 to CBS4. A weighted correlation network analysis (WGCNA) in association and differentially expressed genes across four developmental stages were performed. A total of 44 differentially expressed genes (DEGs) were involved in terpenoid syntheses during leaf development. Among them, the DEGs of the mevalonate acid (MVA) pathway were predominantly expressed at CBS1, while those of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway showed increased expression from CBS2 to CBS4. Besides, fourteen genes were associated with monoterpene synthesis and nine with sesquiterpene synthesis. Functions of these DEGs were further predicted with regard to gene expression profile and phylogenetic relationship with those characterized in previous studies. In addition, 922 long noncoding RNAs (lncRNAs) were detected, of which twelve were predicted to regulate monoterpene and sesquiterpene biosynthesis. The present study provided new insights the molecular mechanisms of monoterpenoid and sesquiterpenoid syntheses of C. burmannii.

7.
Sci Rep ; 11(1): 10516, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006996

RESUMO

Gnetum is a pantropical distributed gymnosperm genus. As being dioecious, Gnetum species apply female and male strobili to attract and provide nutrition to insect pollinators. Due to its unique gross morphology, a Gnetum male strobilus receives much attention in previous taxonomic and evolutionary studies. However, underlying molecular mechanisms that control male strobilus development and pollination adaptation have not been well studied. In the present study, nine full-length transcriptomes were sequenced from three developmental stages of the G. luofuense male strobili using Oxford Nanopore Technologies. In addition, weighted gene co-expression network analysis (WGCNA), and RT-qPCR analysis were performed. Our results show that a total of 3138 transcription factors and 466 long non-coding RNAs (lncRNAs) were identified, and differentially expressed lncRNAs and TFs reveal a dynamic pattern during the male strobilus development. Our results show that MADS-box and Aux/IAA TFs were differentially expressed at the three developmental stages, suggesting their important roles in the regulation of male strobilus development of G. luofuense. Results of WGCNA analysis and annotation of differentially expressed transcripts corroborate that the male strobilus development of G. luofuense is closely linked to plant hormone changes, photosynthesis, pollination drop secretion and reproductive organ defense. Our results provide a valuable resource for understanding the molecular mechanisms that drive organ evolution and pollination biology in Gnetum.


Assuntos
Gnetum/crescimento & desenvolvimento , Sequenciamento por Nanoporos/métodos , Pólen , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Gnetum/genética , RNA Longo não Codificante/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
8.
Front Genet ; 12: 615284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841494

RESUMO

Genus Gnetum, of which the majority species are pantropical liana, have broad industrial uses including for string, nets, and paper production. Although numerous studies have investigated anatomical structures during stem development, the underlying molecular mechanisms that regulate this developmental trajectory in Gnetum species remain poorly understood. A total of 12 full-length transcriptomes were generated from four stem developmental stages of an arborescent representative of this genus, Gnetum luofuense, using Oxford Nanopore Technologies. The results of this analysis reveal a total of 24,151 alternative splicing (AS) and 134,391 alternative polyadenylation events. A remarkably dynamic pattern of AS events, especially in the case of intron retentions, was found across the four developmental stages while no dynamic pattern was found among transcript numbers with varied poly(A) sites. A total of 728 long non-coding RNAs were also detected; the number of cis-regulated target genes dramatically increased while no changes were found among trans-regulated target genes. In addition, a K-means clustering analysis of all full-length transcripts revealed that primary growth is associated with carbohydrate metabolism and fungi defense, while secondary growth is closely linked with photosynthesis, nitrogen transportation, and leaf ontogenesis. The use of weighted gene co-expression network analysis as well as differentially expressed transcripts reveals that bHLH, GRF, and MYB-related transcription factors are involved in primary growth, while AP2/ERF, MYB, NAC, PLAZ, and bZIP participate in G. luofuense stem secondary growth. The results of this study provide further evidence that Nanopore sequencing technology provides a cost-effective method for generating full-length transcriptome data as well as for investigating seed plant organ development.

9.
BMC Plant Biol ; 20(1): 531, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228526

RESUMO

BACKGROUND: Gnetum is an economically important tropical and subtropical gymnosperm genus with various dietary, industrial and medicinal uses. Many carbohydrates, proteins and fibers accumulate during the ripening of Gnetum seeds. However, the molecular mechanisms related to this process remain unknown. RESULTS: We therefore assembled a full-length transcriptome from immature and mature G. luofuense seeds using PacBio sequencing reads. We identified a total of 5726 novel genes, 9061 alternative splicing events, 3551 lncRNAs, 2160 transcription factors, and we found that 8512 genes possessed at least one poly(A) site. In addition, gene expression comparisons of six transcriptomes generated by Illumina sequencing showed that 14,323 genes were differentially expressed from an immature stage to a mature stage with 7891 genes upregulated and 6432 genes downregulated. The expression of 14 differentially expressed transcription factors from the MADS-box, Aux/IAA and bHLH families was validated by qRT-PCR, suggesting that they may have important roles in seed ripening of G. luofuense. CONCLUSIONS: These findings provide a valuable molecular resource for understanding seed development of gymnosperms.


Assuntos
Gnetum/genética , RNA Longo não Codificante/genética , Transcriptoma , Processamento Alternativo , Cycadopsida/genética , Cycadopsida/crescimento & desenvolvimento , Gnetum/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , RNA de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA , Fatores de Transcrição/genética
10.
Mol Genet Genomics ; 295(2): 327-341, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31735985

RESUMO

Pine resin, which typically consists of terpenoids, is a natural product used in various industrial applications. Oleoresin can be obtained from the xylem tissue by wounding the stem bark. Pinus massoniana (masson pine) is an important resin-tapping tree species that originated in southern China. Masson pines with different genetic backgrounds typically have different resin-yielding capacities (RYCs). However, the mechanisms underlying high resin yield in masson pines are unclear. The aim of this study was to identify the possible genetic regulation pathways and functional genes that influence the resin yield. In this study, we conducted transcriptomic and metabolomic studies of masson pine secondary xylem with high, medium, and low RYCs. A total of 230,068 unigenes and 3894 metabolites were identified from the tissue of the secondary xylem. Several differentially expressed regulation factors, including WRKY, bHLH, and ERF, and functional genes such as PKc and LRR-RLKs, were identified among these masson pines. The Kyoto Encyclopedia of Genes and Genomes pathways were mainly focused on diterpenoid biosynthesis, plant hormone signal transduction, and ABC transporters. Furthermore, integration of the transcriptomic and metabolomic data indicated that the PKc- and LRR-RLK-related regulatory and metabolic pathways may play critical roles in the biosynthesis of terpenoids. These above results improve our understanding of the biosynthesis mechanism of oleoresin in P. massoniana and facilitate further research work into the functional analysis of these candidate genes.


Assuntos
Redes e Vias Metabólicas/genética , Pinus/genética , Resinas Vegetais/metabolismo , Transcriptoma/genética , China , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolômica/métodos , Pinus/metabolismo , Extratos Vegetais/biossíntese , Extratos Vegetais/genética , Terpenos/metabolismo , Xilema/genética , Xilema/metabolismo
11.
Sci Rep ; 9(1): 13157, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511632

RESUMO

Germplasm resource collection and utilization are important in forestry species breeding. High-through sequencing technologies have been playing increasing roles in forestry breeding. In this study, specific-locus amplified fragment sequencing (SLAF-seq) was employed to analyze 149 masson pine (Pinus massoniana) accessions collected from Guangdong in China. A large number of 471,660 SNPs in the total collection were identified from 599,164 polymorphic SLAF tags. Population structure analysis showed that 149 masson pines could not be obviously divided into subpopulations. Two core sets, containing 29 masson pine accessions for increasing resin and wood yield respectively, were obtained from the total collection. Phenotypic analyses of five traits showed abundant variations, 25 suggestive and 9 significant SNPs were associated with the resin-yielding capacity (RYC') and volume of wood (VW) using EMMAX and FaST-LMM; 22 suggestive and 11 significant SNPs were associated with RYC' and VW using mrMLM and FASTmrMLM. Moreover, a large number of associated SNPs were detected in trait HT, DBH, RW and RYC using mrMLM, FASTmrMLM, FASTmrEMMA and ISIS EM-BLASSO. The core germplasm sets would be a valuable resource for masson pine improvement and breeding. In addition, the associated SNP markers would be meaningful for masson pine resource selection.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pinus/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , China , Fenótipo , Filogenia , Pinus/classificação , Melhoramento Vegetal/métodos , Especificidade da Espécie , Madeira/classificação , Madeira/genética
12.
Mitochondrial DNA B Resour ; 4(2): 3831-3833, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33366208

RESUMO

Cinnamomum aromaticum has long been recognized and cultivated in tropical and subtropical Asia for their aromatic bark to produce cinnamon. We reported for the first time the complete plastid genome of C. aromaticum and reconstructed its phylogenetic position. The complete plastid genome is 152,754 bp in length with a quadripartite organization: a large single copy (LSC) region of 93,706 bp and a small single copy (SSC) region of 18,916 bp. Each of the two inverted repeat regions (IRa and IRb) is 20,066 bp. We recovered 128 functional genes, including 84 protein-coding genes, 36 tRNA genes and 8 rRNA genes. The phylogenetic analysis suggested that C. aromaticum and two samples of C. camphora forms a strongly supported clade, which is sister to another cinnamon species of C. verum native to Sri Lanka with strong ultrafast bootstrap support.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...